
www.manaraa.com

Procedia Computer Science 00 (2010) 1–5

Procedia Computer
Science

International Conference on Computational Science, ICCS 2010

(Position Paper)Applying Software Engineering Methods and Tools
to CSE Research Projects

Hoda Naguib, Yang Li1,∗

Institut für Informatik, Technische Universität München Boltzmannstr. 3, 85748 Garching, Germany

Abstract

The need for applications that are developed especially for Computational Science and Engineering (CSE) has
been growing rapidly in the recent years. These applications are often a prerequisite for research and have to be
evolved and maintained for considerable periods of time. However, CSE researchers have traditionally put focus on
achieving better computational performance and results rather than the software’s comprehensibility, maintainability
and extensibility. This paper first presents two case studies on two different CSE research projects, where common and
specific problems are identified. Second we propose solutions that intend to apply software engineering methodologies
and tools to improve the CSE research software development.

Keywords: Software engineering, ATLAS, SeisSol, Bug report, Release planning, Reverse engineering, Scientific
computing, High performance computing

1. Introduction

Software applications that are developed to serve computational science and engineering (CSE) research projects
tend to be different from software applications developed for commercial purposes. The main goals of the CSE appli-
cations are evaluating the scientific computing approaches and generating the computation results [1, 2]. Therefore,
most of the time and efforts are applied on how to achieve accurate and stable outcomes. This obviously shows that
the correctness and efficiency of the software are the major concerns of the CSE applications developers. On the other
hand, the comprehensibility, maintainability and extensibility of the software remains a minor issue of concerns for
CSE developers, which are considered to be vital in commercial software development. For this reason, it is necessary
to optimize the quality of the CSE research software since they have to be evolved for a long period of time to better
assist the research [3]. In order to produce high-quality CSE software products, it is worthy to investigate how existing
software engineering methodologies and tools could be used in the development of CSE software applications.

This paper presents an overview on the two ongoing projects from Munich Centre of Advanced Computing (MAC)
- B2 [4] that apply software engineering methods and tools (e.g. release management, tools integration) in two
different CSE applications in terms of scale and problem domains. The paper is organized as follows: Section 2

∗
Email address: naguib@in.tum.de, liya@in.tum.de (Hoda Naguib, Yang Li)

1Corresponding author

c⃝ 2012 Published by Elsevier Ltd.

Procedia Computer Science 1 (2012) 1505–1509

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2012 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.167

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82488365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.167
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


www.manaraa.com

/ Procedia Computer Science 00 (2010) 1–5 2

gives a brief description of the CSE research projects used in the case studies conducted, in which different software
engineering challenges are identified. Section 3 presents a description of the proposed solutions that can tackle the
problems presented in Section 2. Finally, the conclusion is presented in Section 4.

2. Project Descriptions and Problem Statements

There are differences when it comes to the comparison of development of CSE research software and commercial
business software, such as: (1) having a large number of undiscovered requirements, due to the nature of CSE research
process of exploring the unknowns, (2) the developers are focusing more on the research’s computational output
and performance rather than the software’s comprehensibility, extensibility and maintainability, (3) most of the CSE
developers don’t necessary come from a software engineering background [2, 3].

The following subsections introduce the two case studies that are currently being conducted on the SeisSol project
[5] and the ATLAS project [6]. A brief description of the two projects is given, in which problems are identified and
then presented with respect to the projects different scales.

2.1. SeisSol : A small-scale CSE software project

SeisSol is a scientific software for the numerical simulation of seismic wave phenomena. Synthetic data sets and
seismograms can be computed to support seismological research to understand observed data from the field and to
determine the characteristics of sources and material structures [7]. The parallel computing is achieved by employing
Message Passing Interface (MPI). It has been successfully run on SGI Altix 4700 supercomputers with ˜ 2000 nodes.

The development of SeisSol started from 2006 and with a maximum of five developers. The main program
language is FORTRAN 90 plus with few FORTRAN 77 subroutines. There are approximately 140,000 lines of
executable code. Automated overnight compiling and validation with basic test cases are performed. So far, there are
only a small number of users including the developers themselves. A preliminary user manual and related publications
are available.

We can categorize SeisSol as a relatively small-scale software project, based on the development team size and
the program size. The project started from sketching the key functionalities and the main functional modules. Then,
these modules are mapped to codes directly by implementing various subroutines. Unfortunately, requirements are
not elicited comprehensively at the early stage of the development. Undiscovered requirements emerge later on, and
more effort is invested on patching them since it happens often that big code changes have to be made in order to
implement the new features.

Project documentation is also incomplete. At the moment, only a user manual described how to get started with
the SeisSol program and related scientific publications are available for references. Lack of documentation results in
the following two chief disadvantages: (1) It can be a laborious work to review the code manually. Developers need to
search for subroutines based on the FORTRAN code file names and be familiar with the main idea of each subroutine.
Sometimes it can be even more difficult, since the implementation involves complicated numerical schemes and very
often with parallel computing. (2) The system model and design are not visible or not clear. This can be a major
obstacle to extending and maintaining the software.

In the SeisSol project, currently the main user group is the developer team. They are all using the developing
version and there is no formal release process. However, stable versions that are validated by certain amount of
reasonable test cases should be released, especially as the number of external users is increasing. Another problem in
SeisSol is that bug reports and feature requests are not captured explicitly. Moreover, issues such as bug fixing, are
not known or visible to all the developers. In this way, it becomes difficult for developers to keep themselves updated
with information concerning bug reports such as status and the responsible developers.

2.2. ATLAS : A Large-scale CSE software project

ATLAS is a particle accelerator experiment at the Large Hadron Collider (LHC) located at CERN, Geneva,
Switzerland. ATLAS is a high-precision particle detector used for detecting and classifying collisions of particles.
The ATLAS team has developed a set of software and middleware tools which aim to fulfill three functions: (1) con-
solidation and filtering of raw data, (2) distribution of data on the Worldwide LHC Computing Grid (WLCG) [8] and
(3) conducting scientific investigations on the data obtained such as simulation, reconstruction and analysis.

1506 H. Naguib, Y. Li / Procedia Computer Science 1 (2012) 1505–1509



www.manaraa.com

/ Procedia Computer Science 00 (2010) 1–5 3

The main programming languages used are C++ and Python. The statistics form the source repository show that
up to the year 2009 there are O(107) lines of executable code. Moreover, within a two-week cycle, a new release
candidate of ATLAS’s software is released and deployed. Basically the release candidate consists of users requests,
new features and bug fixes. The code of the release candidate is built in a nightly manner that it is further subjected to
validation and testing procedures, in which failures and bugs are discovered.

There is a continuous growth in the number of ATLAS users and developers, which are about 2000 physicists and
engineers from 204 institutions and 35 different countries. Therefore, we can conclude that ATLAS is a huge and
globally distributed CSE research project that relies on a large software infrastructure, which subsequently involves a
large number of developers. Moreover, software releases are usually planed and organized by the ATLAS Software
team in a manual manner. This means that the release coordination, validation and development are challenging tasks
that require constant maintenance and continuous improvements concerning the ATLAS project magnitude. In this
case, considering options such as the use of automated release planning tool would be very beneficial.

The latest statistics shows that at least ninety bug reports are submitted per week by ATLAS developers and users.
In addition, users face difficulties in submitting bug reports since it involves a lot of detailed technical parameters such
as: version number, category and description. Moreover, ATLAS has an open bug repository without organization
hierarchy, thus tracking and triaging are done manually. For that reason, not having a fully automated bug report life
cycle increases the risk of having reports being neglected and delayed fixes [9, 10].

3. Proposed Solutions

This section presents some proposed solutions that we plan to implement for the two ongoing research projects
ATLAS and SeisSol . These solutions attempt in overcoming the problems that were formerly mentioned in Section
2.

3.1. Customized solutions for SeisSol

Reverse Engineering. Due to the lack of documentation, reverse engineering is applied to explore the system
and to learn the system architecture [11]. We start the reverse engineering with requirements elicitation by applying
techniques such as interviewing developers, literature research, brainstorming, and source code understanding to dis-
cover the system requirements and record them into documentation. The requirements are considered from five main
points: discretization, numerical schemes, parameters, output, and parallel computing. System analysis and design
processes can work on these requirements. We examine how the system is designed and how to make improvements
to it, especially on the extensibility and maintainabiliy.

Also a source code documentation generator tool, Doxygen [12], is employed to generate an on-line documenta-
tion of SeisSol. To date, the on-line source code documentation is automated generated whenever code changes are
committed to the repository. In the documentation, Lists of modules and files bring a clear overview of the program
and explanatory descriptions of subroutines and parameters are provided. Such a source code documentation is of
great benefit to the implementation and the cooperation with other team members.

Release Management. To present a stable version with the core functionalities and additional features to users, a
structured release management process should be considered which can also provide version control. In the SeisSol
project, Subversion (SVN) [13] has been already successfully employed in the development to maintain the current
version and the history of the source code. However, branching and tagging of the version control system are not yet
applied, which can be used to plan and manage the release effectively.

Issue Tracking. To close the communication gap between developers, all of issues should be traceable and
transparent to help the developers to be aware of the project state. It is easier for the collaboration since such a CSE
research software is an inter-disciplinary subject with developers who has specific expert domain knowledge. Open
issues can be also planned based on their priorities or broken down to smaller issues if they are too big [1].

3.2. Customized solutions for ATLAS

Automating the Release Planing Process. Developing an integrated release planning environment through which
the manager can assign artifacts such as: issues, tasks and bug reports to specific releases or developers. Such an
environment aids in automating ATLAS’s software release planning process. Through this environment developers

H. Naguib, Y. Li / Procedia Computer Science 1 (2012) 1505–1509 1507



www.manaraa.com

/ Procedia Computer Science 00 (2010) 1–5 4

can easily view all information concerning tasks assigned to them. In addition, developers can report their work
progress in which managers can promptly view the status of the release plan, ultimately reducing communication
gaps within ATLAS’s software team. All of the above assists in the software development, release planning, and
improving the overall productivity. More information about an existing CASE tool environment that can be applied
on the ATLAS project is available in [14].

Enhancing the Bug Reporting Life Cycle. Our main goal is to enhance the current bug reporting life cycle
available at ATLAS by introducing two main solutions, which are the automated bug triaging and linking releases
with ATLAS’s current bug reporting system [15].

• Automated Bug Triaging:
The automated bug triaging solution intends to automate the process of submitting, assessing and assigning a
bug report to be fixed. Therefore, making it easier for users to submit reports and for the developers to fix bugs.
Furthermore, this solution is divided into four functionalities:

– Automatic collection of bug details:
This functionality intends to automatically gather technical bug related details (version number, IDE in-
formation, etc.) from the users environment settings at the time the bug occurred. After then the collected
information can be added directly to the bug report without the user intervention.

– Duplication detection:
This functionality aims on discovering duplicates bug reports, i.e. preventing redundancy.

– Voting:
This functionality aims to provide a voting option that allows different users to state that they have ex-
perienced the same bug, which is quite useful in bug report quality evaluation. In addition, it will allow
users to add different scenarios to a single bug report. This is done in case that more than one user have
experienced the same bug within different circumstances.

– Developers assigning recommendation :
This functionality does not only allow the user to assign links between bug reports and developers, but it
also recommends them. For example, it should recommend the developer who might be the most relevant
to be assigned to solve a specific bug report. As a result the collaboration between developers will be
enhanced and bug-fixing process will be simplified [9, 10].

• Linking Releases with Bug Reports
This solution aims at developing a linking functionality to be added within ATLASs existing bug reporting
system [15]. Through this linking functionality the release mangers will be able to assign a specific bug report
to the concerning software release. Having such functionality will be of great assistance to both the release
coordinator and the developers in handling the bug fixing and monitoring the release planning process. This
will eventually enhance the quality of release planning and coordination process.

4. Conclusion

This paper illustrated two software engineering case studies that examine two different sized CSE research projects:
a small-scale project SeisSol and a large-scale project ATLAS. Furthermore, we presented how software engineering
methods and tools can be applied to enhance the software development of SeisSol and ATLAS. There are common
problems between the two projects as well as specific ones. For the SeisSol project, we introduced the rationale
and release management to solve existing development problems. For the ATLAS project, we suggested to apply
automated release management and bug reporting in the project to ease the large amount of manual work.

5. Reference

[1] M. A. Heroux, J. M. Willenbring, Barely sufficient software engineering: 10 practices to improve your cse software, in: SECSE ’09: Proceed-
ings of the 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering, IEEE Computer Society, Washington,
DC, USA, 2009, pp. 15–21. doi:http://dx.doi.org/10.1109/SECSE.2009.5069157.

1508 H. Naguib, Y. Li / Procedia Computer Science 1 (2012) 1505–1509



www.manaraa.com

/ Procedia Computer Science 00 (2010) 1–5 5

[2] J. C. Carver, R. P. Kendall, S. E. Squires, D. E. Post, Software development environments for scientific and engineering software: A series of
case studies, in: ICSE ’07: Proceedings of the 29th international conference on Software Engineering, IEEE Computer Society, Washington,
DC, USA, 2007, pp. 550–559. doi:http://dx.doi.org/10.1109/ICSE.2007.77.

[3] J. Segal, Some challenges facing software engineers developing software for scientists, in: SECSE ’09: Proceedings of the 2009 ICSE
Workshop on Software Engineering for Computational Science and Engineering, IEEE Computer Society, Washington, DC, USA, 2009, pp.
9–14. doi:http://dx.doi.org/10.1109/SECSE.2009.5069156.

[4] Mac b2 project website.
URL http://www.mac.tum.de/wiki/index.php/Project B2

[5] Seissol website.
URL http://www.geophysik.uni-muenchen.de/ kaeser/SeisSol/

[6] Atlas devloper’s wiki.
URL https://twiki.cern.ch/twiki/bin/view/Atlas/WebHome

[7] M. Dumbser, M. Käser, J. de la Puente, Arbitrary High Order Finite Volume Schemes for Seismic Wave Propagation on Unstructured Meshes
in 2D and 3D, Geophysical Journal International 171 (2) (2007) 665–694. doi:10.1111/j.1365-246X.2007.03421.x.

[8] Worldwide lhc computing grid (wlcg) website.
URL http://lcg.web.cern.ch/lcg/

[9] J. Anvik, L. Hiew, G. C. Murphy, Who should fix this bug?, in: ICSE ’06: Proceedings of the 28th international conference on Software
engineering, ACM, New York, NY, USA, 2006, pp. 361–370. doi:http://doi.acm.org/10.1145/1134285.1134336.

[10] J. Helming, M. Koegel, H. Naughton, Towards traceability from project management to system models, in: TEFSE ’09: Proceedings of the
2009 ICSE Workshop on Traceability in Emerging Forms of Software Engineering, IEEE Computer Society, Washington, DC, USA, 2009,
pp. 11–15. doi:http://dx.doi.org/10.1109/TEFSE.2009.5069576.

[11] K. Kreyman, D. L. Parnas, On documenting the requirements for computer programs based on models of physical phenomena (2002).
[12] D. van Heesch, Doxygen.

URL www.doxygen.org/

[13] Subversion (svn) website.
URL subversion.tigris.org/

[14] M. J.Helming, Unicase website.
URL http://unicase.org

[15] Savannah atlas bug-reporting system website.
URL https://savannah.cern.ch/

H. Naguib, Y. Li / Procedia Computer Science 1 (2012) 1505–1509 1509


